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ABSTRACTt

This report is concerned with the digital estimation of the frequency
response of a two-dimsnsional linear system through which images have
been passed and blurrsd. Almost no a priori Knowledge concerning the

system is requirsd, and only one blurred image is necessary for a

successful estimation. For thoss blurs that have phase reversals,

such as motion blurs and out-of-focus bhlurs, a simple method of
calculating the correct phase has been developed. A nonlinear
homomorphic restoration system is developed and demonstrated on
various types of blurred images. An image may be restored by
filtering e=ither the intensity version or the density version of the
image. The latter not only insures a positive result but also permits
simultaneous deblurring and contrast enhancement. The restoration

procedure consumes only a modest amount of computation time.

t+ This report reproduces a dissertation of the same title
submitted to the Department of Electrical Engineering,
University of Utah, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.
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CHAPTER 1

Problem Deecription

1.1 Introduction

Tuo-dimensional imagsry, be it digital, electronic, or
photographic, has found use in many areas of modern endeavor. For

example, many sclentific epace vehicles and other high-altitude craft

rely heavily on tuo-dimensional data as a means of obtaining

information. Objects of study may range from Nix Olympica on Mars to
marl juana fielde in New Mexico to sections of a submarine hull in a
Moscou steel yard. Aerial photography may aleo be used for geographic
purposes, mensuration, conservation studies, and weather prediction.
More doun-to-earth ueee of tuwo-dimensional data include conventional
medical X-rays (radiographs), angiograms, etress photography, and
flash radiography, to nams but a few. There are also many signals
that are not pictorial in nature but are nevertheless tuo-dimensional,
such as thoese obtained from many types of radar and eonar as well as

eome forme of geophysical eelsmic soundinge.

All of the above signals, though perhaps not explicitly digital
in nature, can be represented ae such in a digital computer. Thie
permite one to apply a variety of digital techniques to the data to

achieve any of a uide range of goale such ae image enhancement, data




compression, scene analysis, or restoration. It le the lact of these

operations which is explored in this thesis.

The problem associated with restoration ies the following: the
data we have been given has been blurred in some way; further, the
axact type or extent of blur is not Known, but must be determined from
the blurred image itself. The goal is to remove this blurring

degradation from the image.

1.2 Mathematical Model

It uill be assumed that the cause of the blurring can be modeled
ae a linear system. The image may be considered a function of

intensity ve the spatial dimensions x and y, as showun in Diagram 1.

A%y (x,y) a(x,y) +

b(x,y)

n(x,y)
Diagram 1

alx,y) le the impulse response, or point-spread function, of the
eyetem, and le assumed to be unknoun. Ali nolse, nix,y), is mideled
ae additive, although this may not aluays reflect reality (film-grain

nolee being a prime example). A discussion of the characteristice of

the noise will be presented in Chapter 4.




alx,y) ie commonly referred to as the Kernel. In thie particular
problem, we are given b(x,y) and must sstimate i(x,y) having very

little knouledge of the blurring system, alx,y), or the nolee, nix,y).

8
The relation bstueen the input and output le that of convolution,
namely:
bix,y) = [ f1{x=xy=-yo)alxy, yy) dx.dy, + nix,y)t (11}
Or
bix,y) « 1lx,y) ® alx,y) + nix,y) (1.2)
It has been establisned that the Fourier integral transform maps
’ convolution into multiplication (and addition into addition), hence:
1

' Tiblx,y) = Flilx,yl - Fl@aibx,yl + Finb,yli (1.3)
t where

% Glu,v) = Tigix,y)) = [ fglx,y)expl-jlux,vy)ldxdy (1.4)
. The Fourlier transform domain ile commonly referred io ae the frequency

domain. In view of thie, the author finds it much simpler and

b E mnemonically more pleasing to use f instead of u,v. Equation 1.3 can
then be written as:

B(f) = I(f) - A(f) + N(f) (1.59)

1f the noiee usrs negligible, and A(f) were knoun, thie could be

written ae

*+ For a discuseion of the discrete representation of theee
relationships, as well as the continuous forms shown here,
the reader ls referred to references 1] and {21. Unlese
enecified otheruise, limite of integration are from -w to +e.




I(f) =« B(f)/A(f) (1.6)
Houwever, it ie well known that wWe are not 8o fortunate uhen

coneidering actual problems.

If 1(x,y) and nix,y) are viewed as random processes, then a final
relationahip can be uritten that will prove most helpful, namely the
relationehip betueen the pouwer spectra of the input and output of the
blurring system:

P (FMACE)I2 + P (f) = Py(f) (1.7)

where P,(f) is the powsr spectrum of the signal bix,y), etc.

In chooeing this blurring model, the case of the spatially
varying blur has been precluded., The blurs considered here must be
ieoplanatic - for example, each portion of the image must be equally
out-of-focus. There are three mojor blurs that can be modeled by such

a eyetem, and these are outlined belou.

1.3 Camera Motion Blur

Subjecting a point of light to camera motion produces a streak in
the reeulting picturs. Plotting intensity as a function of x and y
givee thie streak the appsarance of a rectangular wall. The frequency
reeponse, A(f), ie the Fourier transfcrm of this rectangle and has the
form of ein(x)/x in the direction of the blur, and is constant in the

direction perpendiculer to the blur. The magnitude of A(f) (or




nodulltlon.trlnaf.r functior) ie shown in Figure 1.i on a db scale.
Alternate lobee are negative, and hence have a phase ot n radians
arsociated with them. So not only are the higher frequencies of a
motion-blurred image attenuated, but some experience a sign change

aleo.

1.4 OQut-of-Focus Blur

The point-spread function of an out-of-focus lens system can be
approximated by a cylinder; that is, each point of lignt in the image
ie epread out evenly over a circular area. This is illuetrated in

Diagram 2.

o — -~ .
eVl e —— v ea .
¥ ¢ ()
RS o e -
s - —

N

Diagram 2
Although the true point-spread function is actually related to the
Fourier transform of the aperture of the lens system(3), the
cylindrical approximation is @ good one and is also mathematically
tractable. The frequency response of the system is of the form
J,(r)/r, uhere J,(r) is a Bessel function of the first Kkind, order
one, ae ehoun in Figure 1.1. An image passed through this system will
not only have its higher frequencies suppressed, but, due to the

negative lobes of A(f), some frequencies will undergo a phase shift of




MAX = e e MAX = -2 1089494
L -45 731638 MIN = -g2 S65813

(a) (b)

MAK = e e
MIN = -2048 ©

(c)

Figure 1.1

The modulation transfer functions (on a Jb scale) of

(a) horizontal motion blur
(b) out-of-focus blur
(c) atmospheric turbulence blur
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r radiane (ae was also pointed out in the case of motion blur).

1.5 Turbulence Blur

A third type of blur that can be modeled by a linear system is
that resulting from otmospheric turbulence. To explain the model of
the point-epread finction let us consider a real-world situation in
which a etar is being viewed from a terrestrial observation point.
Were the etar being viewed through an optically uniform medium, it
would appear to shine with constant intensity. Houever, since the
atmosphere ie not thermally uniform, its index of refraction varies as
@ functlon of time and position; hence the rays of light from a
celeetial object are refracted varying amounts. The resulting

twinkling ie well known.

A point of light coming through the atmosphere assumes a gaussian
dietribution of the form exp(-kr?) when averaged over timell7). This
explains why terrestrial photographs of stars seldom depict sharp
imagee, but instead indistinct fuzzy blobe. The frequency response is
aleo gaussian (see Appendix 0) so the blurred image suffers no phase
shifte but eimply an attenuation of higher frequencies, as shoun in

Figure 1.1.




1.6 Problems Involved in Restoration

The immediate problem in restoration ie the identifi~ation of
A(f), the frequency response of the blurring system. But even after
A(f) hae been ldentified, other problems remain. It was noted
previously that if the Fourier traneform of the blurred image, B(f),
and the transform of the system response, A(f), were identified, it
might be possible to find the original image by a eimple division,
i.e.

B(f) = I(f) - A(f) (1.8)

I(f) = B(f)/A(f) (1.9)
It ie commonly understood that this is not usually possible, or at
least not optimal, for a variety of reasons. One is that for some
values of f, A(f) may be zero, which happene to occur in the case of
motion blur and out-of-focus blur. Another difficulty results from
the addition of random noise to the “lurred image, which precludes a
perfect restoration, One of the effects of the filters used to
restore a blurred image ie to booet high frequency power in the image;
any noise residing in those frequencies will also be amplified, and
may easily dominate the restoration. The consequances of ignoring
thie 1ill-conditioned nature of the restoration system will be

illustrated in Chapter 3.

The above discussion assumes that an explicit Knowledge of A(f)

(or alx,y)) ie available. Most researchere aseume that thie knouledge




ie khoun a priori, ever though such a case is the exception ratt.zr
than the rule. Thie dissertation is restricted to those blurs for
which a{x,y) ie unknoun. This portian of the deblurring problem has
two parte; one ie the estimation of *he blur magnitude, and the second
that of determining the associated phase. The problem of phase
estimation hae remained extraordinarily difficult(S), even though much
of the groundwork has been laid for determining the magnitude of a
linear blur(4]. A solution to the phase problem (for the types of

blurs discueeed above) is presented in the next chapter.

There remain tuwo final problems in digital image restoration.
The firet is that the process is just that - digital. It has baeen
explained that the blurring process is one of convolution; the
deblurring process is also, but a problem arises from the fact that
the deblurring Kkernel, which is in some way related to the
convolutional inverse of alx,y), may have infinite extent. This is no
obetacle to a mathematician but does pose serious problems to the
finite capacity of a digital computer. The methods of terminating

gracefully an infinite computation will be discussed later.

The final problem in image restoration is easily cvc-looked. The
original image (uhich is a rspresentation of the light intensity of a
scene, blurred or othsruise), is everywhere positive. There is no

aesurance, however, that it will remain so after passage through a

linear deblurring eystem. Negative values of intensity in a restored
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image have, of couree, no phyeical meaning. This problem hae been the
focal point of much research in recent years, an excellent survey of
Which has been prepared by Andreus(20]. Most of the present methods,
houever, require an excessive amount of computation time. TVie present
author'e method for overcoming the problem will be presented in

Chapter 3.
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CHAPTER 2

Reetoration By Pouer Specirum Equalization

2.1 A Nonlinear Homomorphic Restoration System

Chapter 1 introduced the mathematical model of the blurring
eyeter, deecribing it as a linear system with additive noise. The
blurred output, bix,y), of this system will pe restored bu passing it

through the nonlinear system shoun in Diagram 3.

restoration
criterion

b(x,y) r(x.y{

Diagram 3

E is a1 estimator which has as inputs the blurred image itself
and a restoration criterion, From these two inputs a restoration
kernel (e generated which, uhen convolved with the blurred image,
produces a reetored image satisfying the given criterion. The
restoration kernel, hix,y), is re-estimated for each new input to the
eyetem., C is eimply a tuo-dimensional convolver, uwhich convolves this

kernel with the blurred image.




The restoration system ls termed homomorphic because it has the
ability to map esveral differsnt blurrsd versions of an imags back
into that same image. This ability ie a benefit of the nonlinear
nature of the restoration system, The task of the eetimator is
therefore especially difficult, as it must detsrmine the naturs of the
blurring eystsm from an individual blurred imaqe submitted for

restoration.

2.2 The Restoration Criterion of Power Spectrum Equalization

Many conetraints may be placed on hix,y) to produce a iestored
image, rix,y). One restoration criterion might consist of
constraining hix,y) such that ths expscted mean squared difference
bstueen the restored image, ri(x,y), and the origiral, undegraded
image, 1(x,y), would be minimized. This is 3 reasonable c:riterion and
is discussed fully in Chapter 3. A mathematically simpler approach
can bs established from ths discussion in Chapter 1 concerning power

spectra. Let h(x,y) be constrained such that

PifIH(f))? = P (f) = P,(f) (2.1)

Thia relaticnship etates that hi(x,y) will bs constrained so that
the power spsctrum of the restored imags will be equal to the pouer
epactrum of the original image. Thie is a rsasonables thing to demand.
It means that the distribution of power according to frequency in the

restored image will be est to what it originally was before the
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blurring occurrsd. This approach is an adaptation of the nonlfﬁbar
homomorphic filtering developed by Stockham(6), (18], 119] and later
expandsd by Colel4] to two dimensions. Their method utilizes the
average log spectrum, which ls somewhat different than the pouer
epsctrum. (See Appendix A, uhich compares the two.) Solving equation
2.1 for H(f)| yialds:

HF) ) = [P (f)}/P(£)]42 (2.2)
Or,using the fact that

P(f) = P(FIACFIIP + P,(f) (1.7)
we can write

H(f)| « P}/ P (E)ACEIP + PF)I}V2 (2.3)

To cbtain P,(f), the ergodic hypothesis is invoked to permit the
estimation of the power spectrum from a scene that is considered to be
a meiibsr of ths statistical snesmble to which ilx,y) belongs (Appendix
A). The justification for this ie illustrated in Figure 2.2, which

shous the similarity of the pousr spectra of the images of Figure 2.1.

It ie interssting to note that for those frequencies in which the
nolse power is small rslative to signal powar the foliouing holds:

Hif) = L/IA(F) (2.4)

The homomorphic filter attsmpts to correct for the effects of the
magnitude of A(f), and does &0 with no knouledge of the phase of the

blurring system. Therefore, H(f) must be further constrained to take
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Figure 2.1

Four statistically similar digital images.
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118 43510 MIN = 48 5977717
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Figure 2.2

The power spectra of the images of Figure 2% 1
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into account the phase of the blur. In general, the determination of
the phass of a blur is a difficuit problem. One might aek i* an
averaging scheme similar to that used to obtain the power spectrum of
an image (eee Appendix A) could be ueed to cbtain the phase
information neaded by H(f), perhaps through a relationship similar to
that of equation 2.2. Unfortunateiy, thie must be ansuwe-ed in the
negative. Tho reader ie refered to iork by Colel(4] and McGlameryl(S),
who have ehouwn that the phase does not converge to a statistically
meaningful quantity. The author therefore proposes a different echeme
based on the nature of the power spectra of both ciear and blurred
images. Figure 2.3 ehous the pousr spectra of tuwo clear images and
aleo the epectra of the eame two images photographed out-of-focus.
The effect of blurring ie etrikingly obvious, as one can see the
imprint of |A(f)! on P,(f). In Figure 2.3d the effect of adding the
powsr in the noliss, P,(f), is also amparsnt, for the signal power

di-ops well below the noiee power at higher frequencies.

2.3 Phase Eetiration by the Zero Crossing Technique

One characteristic common to both these power spectra and almost
all othere ie that eignal power is very high relative to noise in the
lower frequenc’~e. On the basie of thie fact and equation 2.4 it can
be concluded that H(f)| will approximately equal 1/IA(f)| at these

frequenciee. Figure 2.4 ehous thie to be true. P;(f) was estimated

f~om the image of Figure 2.2a.
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MAXL = 115 60698 MAX = 115 99445
MiN = 57 ases1s MiIN = 45 824097

(a) (b)

MAX = 117 8@349 (Y I 114 41132
MIN = 48 52440K HIN = 42 £66189

(c) (d)

Figure 2.3

(a) and (b): The power spectra of two in-focus images.
(c) and (d): The power spectra of the same two images
photographed out-of-focus.




MAX x 22 831169
MIN + 33505086 .

22 831189 21 2400865
-4 3350508 1 7099142

Figure 2.4

(a) and (b): The power spectra of Figures 2.3c and 2.3d
minus a prototype power spectrum.
(c) and (d): Enlarged cross sections of the above spectra.
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The fact that 1/IA(f)| ie vieible in the low-frequency regions of
H(¢t)| ie the key to the determination of the phaee of ths blur. An
algorithm can be devieed that eearchee for the first. zero croeeing of
IA(f)l, and from thatt generatee the appropriate phase of 0 or n,

depending on whether a certain lobe of A(f) is positive or negative.

The task of determining the phase of a motion blur is similar to
that of an out-of-focue blur except that the problem does not enjoy
the circular eymmetry of the out-of-focus blur. The basic notion is
the esame though, namely the searching of the louw frequencies for zero
croesings. The algorithm muet kmow a priori, however, uwhich of the

three blure deecribed in CThapter 1 ie preeent.

The present diecussion on determination of phase may seem
eketchy, wuwhich it le. The method described hus some deticiencies,
namely the inability to determine the direction of blur (in the case
of motion blur) or the type of blur, i.e. out-of-focus, motion, or
turbulence. A more 2ophisticated and powerful tool for phase

eetimation was therefore developed.

t Appendix C gives sufficient information on the spacing of
the zero crossings and their relation to the point-spread
function to implement the algorithm,




2.4 Phase Estimation by Cepstral Techniques

Although the concept of the cepetrum in one dimension has been
understood for quite some time(7), it was only very recently that the
properties of the tuo-dimensional cepstrum were investigated (Rom(8]).
The cepstrum of an image, i(x,y), which has Fourier transform I(f), is
defined as follous:

Clg) = FloglI(f)} (2.5)

where q (quefrency) has the dimension of two-dimensional distance.

The propertiee of the two-dimensional cepstrum are similar to
thoee of the one-dimensional cepstrum insofar as convolution is mapped
into acdition. Thie ie demonstrabie in our present problem, namely
that of an image, 1i(x,y), being convolutionally blurred by alx,y).

Ignoring the effecte of noise, the derivation is:

bix,y) = i{x,y) @ alx,y) (2.6)

B(f) =« I(f) - A(f) (2.7)
logB(f)| = logiI(f}l + loglA(f)| (2.8)
T (logB(f) i} « F(logiI(f)|} + TllogiA(f)i} (2.9)

C,lq) = C,{q) + C.(q) (2.10)

One might well ask if C.lgq), the cepstrum of the blur, is
identifiable in C,(g), the cepstrum of the biurred image. Rom ansuers
thie in the affirmative, pointing out that spikee which are

characteristic of C.(q) are apparent in C,lq). The origin of the
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eplkes is explained by the following. Suppos: alx,y) is a rectangle
of length a corresponding to a wmotion blur. A(f) is then
ein(raf)/(rnaf), which has zero crossings at intervals of 1/a. The
logarithm of the magnitude of A(f) will have pe-riodic spikes of height
-» at these intervals of 1/a. The result of transforming this
quantity will be a large negative spike a distance a from the origin
in the cepstral domain. The location of the spike in the cepstrum
Indicates the direction of the motion blur as well as its length. The
cepetrum of en out-of-focus blur is similar but circularly symmetric.

ouing to the circular symmetry of J,(r)/r.

The presence of these spikss enables one to dif{erentiate be tween
out-of-focue and motion blur. The cepstrum of a turbulence blur lacks
these characterietic spikes, which i- an identifying feature in and of
iteelf. The cepetrum not only identifies the type of blur but also
reveals its extent. Thies information uniquely defines alx,y), the
point-spread function of the blurring systern. From ailx,y) hoth the

magni tude and phase components of the blur can be generated.

As equations 2.7 through 2.10 indicate, computing the cepstrum of
even a small image ie a time consuming operation, In view of the fact
that our interest in the cepstrum arises only from the need to
identify the blur and its phase, the author proposes the following
shor tcut. Equation 1.7, wuhich dsecribes the power spectrum of a

blurred image, can be wuritten as follows without the noise term:
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P(f) = P (f)IA(F)F (2.11)
It ie usual to take the logarithm of P,(7) in order to display it on a
db ecale. The Fourier transform of the logarithm of the pouwer
epectrum is termed the power cepstrum of the image:

logP,(f) = logP,(f)} + 2loglA(F}| 2.12

¥ tlogP,(f)) = TllogP,(f)} + 2C.(q) 2.13
Ae Indicated oy equation 2.13, the pouer cepstrum of a blurred image
ie the sum of tha pouer cepstrum of ths clear image and the cepestrum
of the blurring seystem. It is this latter quantity which contains

epikes characteristic of the nature of the blur.

Figure 2.5 preeents thc pouwer spectrum and power cepstrum of an
out-of-focus image. The pousr cepstrum has been clipped at zero and
inverted to disclose the characteristic spikes of C.(q). The ring of
spikes ie clearly visible, especially in the overhead view. Figure
2.6 ehous the power spectra and power cepstra of motion-blurred and
turbulence-blu~red images. The characteristic twin peaks of motion
blur are easily recognized in the former, uhile no particular

landmarke stand out in the iatter.

Thie cepstral method of blur determination is independent of the
restoration method, and can be applied to any convolutional blur wh-.:ze
cepstrum is identifiable in spite of the presence of noise. The

author's blur identification algorithm is described in Appendix C.
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MAN

(a) (b)

(c)

Figure 2.5

(a) The power spectrum of an out-of-focus image.
(b) The power cepstrum of the same image.
(c) An overhead view of the power cepstrum.
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Figure 2.6

(a) and (b): The power spectrum and power cepstrum
of a motion-blurred image.

(c) and (d): The power spectrum and power cepstrum
of a turbulence-blurred image.
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Combining now the phase of the blurt with the magnitude of the
reetoration filter of equation 2.3, we are in a position to attempt

reetoration.

2.5 Examples of Restoration by Power Spectrum Equalization

Figure 2.7 depicts the digital vsrsion of four blurred
photographs. Figure 2.7a is a photograph of an eight story office
building taken out-of-focus. Figure 2.7b (a photograph of a sign on a
construction site)l is also out-of-focus. Figure 2.7c¢ is a
motion-blurred photograph of the same sign. Figure 2.7d is a
photograph of a seign blurred by atmospheric turbulence. This
photograph was taken on a hot summer day through a telescopet!t from a
dietance of tuwo miles, thus resulting in an atmospheric turbulence

blur.

Figure 2.8 shous the pouer spectrum of ‘hese four images, and
Figure 2.9 the inverted and clipped power cepstra, under which the
findinge of the blur identification algorithm are listed. Figure 2.10
depicte HH(f)| for each image. and Figure 2.11 the associated phase.
Figure 2.12 shous the restoration kernsls and finally, in Figure 2.13,

the restorations of the four images are pressnted.

t In this particular case, it does not matter whether the
phase or minus the phase is used, as one ie equivalent to the
other,

tt Fleld Model Questar, 2 second exposure on PAN-X.




The restoration of Figure 2.7a reveals the true relative width of
the horizontal and vartical columns of the office building and
disclosee some previously indiscernable window panes. The small text
on the Hilton signs is now decipherable. The echoes appearing in the
Hilton restorations (and to a lesser degree in the others), are caused
by the fact that the restoration kernels were windowed. The reason

for windouing, as well as ite effects, are discussed more fully in

Chapter 5. The restoration of the sign in Figure 2.13d is interesting

not because the blur was phaseless, but bscauss noise dominates the
reetoration. The eource of the noise can bs readily explained if one
examines the powsr epectrum of the blurred scens (Figure 2.8d) and the
criterion for restoration. Ons will note from the power spectrum that
noise dominates all higher frequencies. Ths criterion for restoration
is that these noise-dominated frequsncies will be amplifi~d until
there is as much power there as before blurring. In thie case this
pouer spectrum equalization criterion is too aggressive. This
ill-conditioned situation could be avoided by re-sampling the data at
a Nyquist rate which excludes these higher frequsncies. An alternate

solution is to change the method of restoration.

One of the features of the restoration system of Diagram 3 is
that the restoration criterion can be changed. Chapter 3 presents
eeveral euch criteria, including the criterion of least mean square

error. It is well Knouwn that this criterion, which is not as




aggressive ae the pousr epectrum equalization criterion, handles noise

conelstently well,




Figure 2.7

Four blurred digital images.

(b)

(d)
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Figure 2.8

The power spectra of the images of Figure 2.7.




Out-of-focus blur Out-of-focus blur
PSF of radius 7.8 PSF of radius 4.5

(c)
Motion blur

PSF of length 22, 0=8.5° Turbulence blur

Figure 2.9

The power cepstra of the images of Figure 2.7. The
findings of the blur-identification algorithm are
lic:ted under each cepstrum.
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Figure 2.10

The magnitude of the restoration systems for
the images of Figure 2.7
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Figure 2.11

The phase of the restoration systems for
the images of Figure 2.7.
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Figure 2.12

The restoration kernels for the
images of Figure 2.7.
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Figure 2.13

The restorations of the images of Figure 2.7.
The restoration criterion was power spectrum
equalization.
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CHAPTER 3

Other Restoration Criteria

3.1 Minimization of Mean Square Error

A common criterion for restoration is that of minimizing the
expected value of the esquare of the difference between the original
image and the restored image. This concept is outlined in Diagram &,

where e is the quaentity to be minimized.

_JILn_:E....__.__J""

1(x,y) | A % h{x,y—]J = {'}2- vez

nix,y)

Diagram 4
The criterion of minimum mean square error constrains H to be:
HUf) = P(£)A(E)/IP(E)IALE)1? + P,(£)] (3.1)
The derivation of H(f) is given in Appendix 0. The above restoration
criterion and resulting restoration system strongly resemble certain
aspects of Wiener filtering. The above system is fundamentally

different, however, in that A(f) is not knoun a priori, but must be

determined by tho estimator, E, from each blurred input. The filter
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can be computed by esquaring the power spectrum equalization filter of
equation 2.3 and multiplying by A*(f). The differences between the
tuo filters, ospecially in terms of "aggresiveness", are elaborated

upon by Cole.

In the case of motion blur and out-of-focus blur, A*(f) is
readily determined from the blurred image itself via the power
cepstrum. [t woe pointed out in section 2.4 that the spikes in the
pouer cepstrum uniquely determine the nature and extent of the blur.
From thie knouledge one can compute IA(f)| and A*(f), as well as the
phase of A(f). However, such information is not available in the case
of turbulence blur. Tne necessary information can be obtained,
though, from the power spectrum equalization filter of equation 2.3.
It hae already been pointed out that this filter approximates the
inveree filter for those frequencies in which the noise power is
emall. For blurring resulting from turbulence, the filter assumes the
form -kKx? on a db ecale, which ies sufficient information from which to

model A*{f) by curve fitting near the origin.

Figure 3.1 illustrates restorations of the biurred images shoun
in Figure 2.7 by the least mean square error criterion. The method of
identifying t(he blur and computing the phase is the same as that
discussed in section 2.4. The most significant change to be noted is

in the restoration of the turbulence-blurred image in which the noise

has been contained much more effectively. This example illustrates
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Figure 3.1

Restorations of the images in Figure 2.7 using the
criterion of minimum mean square error.
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Figure 3.2

The magnitude of the restoration systems for the images

of Figure 3.1. The magnitude of the turbulence system was
not allowed to attenuate higher frequencies to the theo-
retical limit (-2000 db) as this would exceed the 36 bit
capacity of the computer.




the fact that the minimum mean equare error filter is much less
aggressive in the presence of noise than is the power spectrum
equalization filter, However, this lack of aggresiveness is very

evident in the poorer quality restoration of the fine text in the

Hilton eigne.

3.2 Phaee-Oniy and Magnitude-Only Filters

Many inquiries have been made of the author concerning the

effects of removing only the phase dagradation or magni tude
degradation in a blurred image. Such restorations of the
motion-blurred Hilton eign are presented in Figure 3.3. These
reetorationes make evident the necessity of removing both the phase and
magnitude components of the blur. The phaes-only restoration is
particularly interesting as it illustrates that the phase degradation

of the blur, though necessary to remove, is small.

3.3 Inverse Power Spectrum Filter

The following reetoration criterion might be considered to be

useful:

P(fIHIE)? » P(f) = 1

H{f)| = (1/P,(§)) 12 (3.3)

Thie criterion has produced fairly ,ood results when used to remove
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Figure 3.3

(a) A phase-only restoration of the motion-blurred Hilton sign.
(b) A magnitude-only restoration of the same sign. Under each
image is shown the resulting restoration kernel.
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narrou-band additive pollutants or reverberations from audio
eignale(12]. The criterion is inadequate, however, when applied to
the present dsblurring problem. This inadequacy results from the fact
that the high frequasncy noise floor in the pPower spectrum of a blurred
image ie about 60 dbt belouw the power of the lower frequencies.
Inverting this epectrum and taking the square root results in boosting
those noise-dominated frequencies by 30 db, which allous the noise to
dominate the restoration. The power spectrum equalization filter
boosts thuse frequencies by S db or less, and the minimum mean square

error filter actually attenuates them.

3.4 Inverse and Hand-Tailored Inverse Filters

In light of the above discussion, the consequences of restoration
by the pure inverse filter are readily predicted. Using the
information contained in the power cepstrum of a blurred image, it is
not difficult to determine the exact nature of the linear system that
produced the blur and then to create its convolutional inverse.
Restoring the office building with such a system results in the image
shoun in Figure 3.4a. This result supports the statement accompanying
equation 1.8, Not only does the denominator of the inverse filter
equal zero for certain frequencies, but this filter also boosts the

pouwer of frequencies that were dominated by noise after the blurring

t Vheess numbere are empiricai.
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(a) The office building restored with a pure inverse filter.
(b) A restoration of the same image using a hand-tailored
inverse filter.
The magnitude of the restoration systems are shown under
each image,
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occurred. The restoration of the blurred test pattern in Figure 3.5
illustrates that the latter of these tuo effects is by far ‘he nore

serious degradation.

The restoration of 3.5d is the same as that of 3.5¢ uith the
exception that noise was added to the density version of the image
before deblurring. One might correctly assume that containing the
noiee and restoring the image are tuo conflicting objectives. A
common practice, houever, is to suppress the gain in these
noise-dominated frequencies, and then to clip tne filter to eliminate
zeroes in the inverse. The results of restoration with  this
hend-tailored inverse filtsr ars shown in Figure 3.4b., This approach
permits the design of a filter that will bring ou specific
information which might be ovarlooked by a more mathematically f-rma)

and rigoroue filter.

These restoratione demonstrats the fact that a knouledge of
alx,y) does not insure a meaningful restoration. Because of the
ill-conditioned nature of the problem, great care must be exercized in

the design of a successful restoration system,

3.5 Density Restoration

One of the notable flaus of the hand-tailored inverse restoration

of Figure 3.4b, and of others previouely presented in this work, ie




(a) (b)

(¢) (d)

Figure 3.5

(a) A computer-generated test pattern,

(b) An out-of-focus version of the same pattern.

(¢) A pure inverse restoration.

(d) A pure inverse restoration of a noisy
version of the blurred pattern.
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the presence of pure black arsas in the restored image. These result
from negative numbers in the processed image and are hence called
"superblacks". Superblacks not only lack phyeicalimeaning. but are
aesthetically unpleasant. Although the input to the restoration
system is positive, there is no assurance of a positive output. In
fact, work ty Luknez[l3)] and Boas and Kacl[l4)l shouws that the
convolutional system that will guarantee a positive output (given a

positive input) 18 opposite in nature to that of the restoration

eystem which is needed for deblurring.

As a means of assuring a positive restoration, the author
proposes restoring tne density version of the image, as opposed to
restoring the intensity version. Densityt refers to the density of
silver in the developed photographic image, and is proportional to the
logarithm of the scene intsnsity uwhich exposed the film. The last
etep In a deneity restoration is exponentiation, which insures the
positiveness of the restoration. Tuo methods for accomplishing such a

density reatoration are nou presented.

t For a complete discussion of the photographic densi ty
version of a ecene, see "Fundamentals of Photography", by
C. B, Neblette, Chapters 5 and 6.




3.5.1 Equalization of Density Power Spectra

Let us assume that the density version of the image was blurred,
not the intensity version. The power spectrum equalization

restoration criterion of equation 2.1 is then applied, where P,(f) and

P,(f) are both estimated from densities. The resulte of performing

euch a reetoration are shoun in Figure 3.6. The phase information,
however, must still be obtained as per Chapter 2, i.e., from intensity

information.

3.5.2 Processing of Densities by the Intensity Restoration System

The restoration system, H(f), 1is generated from intensities
according to the criterion of power spectrum equalization. Then, in
lieu of restoring the intensity version of the blurred image, the
density version is restored. In so doing, the logarithm is considered
to oe a linear scaling operation. Before deblurring, the image is
ecaled by 1/c (by taking the 1log), and after deblurring it is
multiplied by c (by exponentiation). This procedure is most
successful on scenes of louw dynamic range. In this case the
approximation is very good, i.e.,

log(x+§) & c(x+§)

uhere § is emall.
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Figure 3.6

The blurred images of Figure 2.7 restored by the
power spectrum ~qualization criterion applied to
the density version of the images.
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Figure 3.7
The blurred images of Figure 2.7 restored by

passing the density version of the images through
the intensity restoration filters of Chapter 2.




The resulte of this restoration procedure are showun in Figure

3.7. This procedure le basically different from the previous density

restoration method, but in most casss ths results are quite similar.
The method is advantageous in that the pousr spectrum of the blurred
imeges is also used for blur identification (i.e. to compute the pouer

cepstrum) as well as for restoration.

In the case of a high dynamic range scene, the aesumption that
taking ths logarithm can be vieuwed as a linsar scaling operation may
prove to he unsatisfactory. This is demonstratec in the restoration
of the image shoun in Figure 3.8a. The bright borders and dark echoes
of the density restoration (Figura 3.8c) are artifacts of the
nonlinearity of the logarithm. But evsn though such flaus are not
evident in the intensity restoration, it ie questionable if one
restoration le actually superior to ths other. The cause of the
teardrop-like distortions in thsse rsstorations will bs Siscussed in

section 4.3.

3.5.3 Homomorphlic Image Enhancment

The processing of the dsneity version of an image not only
insures a positive result but also allous for simultaneous image
contrast enhancement as described by Stockham(15]. An intensity scene
ie composed of two components, the scene illumination and the object

reflectivity, 'hich are multiplied to yield ths observed intensity.




Figure 3.8

(a) A high-contrast blurrec image.

(b) Intensity restoration by power
spectrum equalization.

(c) Density restoration using the
intensity restoration system.




Taking the logarithm of this scene transforms the multiplicative
relationship into an additive one, as shoun belou:

i({x,y) = illumination - reflectance (3.5)

Log(i(x,y)) = Log(illumination) + Log{reflectance) (3.6)

It the two quantitiee on the right of equation 3.6 occupy
different frequency bands (and they do, roughly), linear filtering can
be performed to enhance ths term corresponding to the cbject
reflectivity. The result of performing such a eimul‘aneous
deblurring/enhancement restoration of the office building ie ehoun in
Figure 3.9. The process produces a highsr contrast image which is

aesthetically more pleasing.
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Figur~- 3.9

(a) A homomorphically-enhanced version
of the restoration in Figure 3.7a.

(b) The frequency response of the
enhancement filter.
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CHAPTER 4

Effects of Noise

4.1 Sources of Noiss

It wae pointed out in section 1.2 that the blurred image iteelf
ie not available but rather a blurred image that has been contaminated
by noiee. Sources of noiee may include sensor noise, transmission
noise, ecanner noise, and quantization noise. Noise may also be
introduced by the etorage medium, such as photographic film.
Photographic film-grain noise is the greatest source of noise in the
imagee considered in this thesis. Impulse noise is also of concern in
thie work. Impulse noise is caused by dust particlee on the film or
print ueed to store the image before digitization. The nature of
these two sources of noiee, namely film-grain noiee and impulse noise,

ie discussed belou.

4.2 Film-Grain Noise

Film-grain noise ie caueed by the tendency of the eilver (halide)
crystale in the phutographic emulsion to clump together during
development. The mean diameter of the crystals is on the ordr~ of 1
micron, and that of the clumpe about S microns. This granular nature

of the photographic representation of the scene ie as though the
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scene, ae recorded on film, had been corrupted with random additive
noiee. But since this has been added to the logarithm of the scene
(eee footnote, section 3.5) the nuise is really multiplicative, which
Figure 4.1 illustrates quite graphicaliy. The notion of preprocessing
the logarithm of the data to reduce the effects of multiplicative

noise has been explored by Colel4].

The effects of film-grain noise are two-fold. As can be seen by
examining the powsr spectrum of almost any blurred image, much of the
highsr frequency information contained in the image is dominated by
the energy in the noise. Any attempt to retrieve this information by
replacing the energy that blurring removed could result in the noise
gaining 8o much energy that it would completely dominate the
reetoration. Such a case is shoun in the inverse filter restorations
of Figuree 3.4a and 3.5d. Consequently, because of noise problems,
the restoration system must be less aggresive, thus resulting in an
imperfectly deblurred image. Much of the motivation behind the
minimum equare error filter and the power spectrum equalization
filtere is a desire to kesp noise under control during restoration.
In moderately noisy images both types of filters appear to perform
equally well in containing the noise; the major difference betueen

them being the amount of deblurring each accomplishes.

A eecond effect cf noise is an advantageous one. In the

denominator of many of the rsstoration filters described herein there
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Figure 4.1

(a) A section of the density version of a (blurred) image.
(b) A section of the intensity version of the same image.
(¢) A section of the office building image.
(d) The same section after Tuckey filtering.
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occurs the term P (f)IA(F)? + P(f). In the case of motion blur and
out-of-focus blur, A(f) equals zero for certain values of f. The
Zeroes are particularly troublesome in that they occur at the same
frequencies as the zeroes of the blurring system. These frequencins
have been contaminated by noise, and division by A(f) would result in
infinite amplification of thess noise-dominated frequencies. Houever,
the addition of the power in ths noise to ths denominator of the
reetoration filter moderates this intrinsicaily ill-conditioned

eituation,

It ie difficult to conetrain a filter to handle film noise in a
mathematically precise manner. The minimum square error criterion
comee cloee to doing eo in the present deblurring problem, but only
after two aeeumptione are made. The first is that the noise ie added
to and uncorrelated uwith the eignal; the second is that the statistics
of the eignal are stationary (see Appendix D). Figure 4.1b shous the
first aesumption to be incorrect, and a glance at any common
photograph places the second assumption in question. However, the
deficlenciee of these tuo assumptions may be self-canceling in that
the noies varies with the eignal. The ratio of the tuo, which is
found in many restoration filters, remains approximately constant,

thus allowing the filtsr to perform ae though these assumptions were

indeed valid.
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4,3 Impulse Noise

A second type of noise, which is quite different from film-grain
noiee, is impulse noise. Impulse noise is caused by small specks
dust or. the film during exposure (resulting in an unexposed spot on
the film) or on the film during scan-in (resulting in a pure uhite
spot in the image). The effects of this noise are most visible in the
restored images of Figure 3.8. Small specks of dust, which are barely
discernable in the original image, have assumed Gargantuan proportions
in the reetoration. This is the result of the restoration kernel
being convolved uwith a large impulse, the result of uwhich is the

kKernel iteelf.

Moet of the images in this thesis were either edited "by hand" to
remove these epikes or were subjected to a more sopnisticated scheme
such as the resistive filter proposed by Tukeyllbl. The Tukey scheme
is nonlinear and consists simply of setting the value of each point
equal to the median value of its neighbors. The process obeys
scalability but not superposition over addition. That is, a constant
times the input yields the same constant times the original output,
but input one plus input two does not equal output one plus output
tuo. Applying the Tukey filter to any monotonic function of the data
results in an output operated on by that same function. [t therefore

makes no difference whether the density version or intensity version

of the image is filtered. The result of naving "Tukey-filtered" a
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section of the office building is shown in Figure 4.ld.

The Tukey filtering procedure is well suited to the removal of
noise spikes from blurred data. The filter tends to remove abruptly
changing features of the image uhile leaving gently varying data
relatively untouched - blurred data is gently varying, the noise
splkes are not. The procedure is also pleasing from an energy point
of view. Were the image low-pass filtered to remove the noise spikes,
much of the energy associated with these spikes would remain in the
image. The Tukey scheme, on the othe~ hand, removecs the spikeé and

the energy associated with them almost entirely.

4.4 Noise and the Reflection Scanner

Most of tne images in this thesis uwere not digitized directly
from the film itself, but instead from a print of the film scanned on
a reflection scanner. One might suppose that this would compound tnhe
film-grain noise in tha. the graininess of the print Would be included
in the scanned-in image. To investigate the effect of this additional
grain noise, several images were digitized directly on a scarning
microdensitometert. The power spectra of these images wWere compared

Wwith the spectra of the same images that had been scanned on a

t Drs. B. R. Hunt and D. H., Janney of g Los Alamos
Scientific Laboratory offered their time and acilities to do
the actual scanning of the images. The out-of-focus Hilton

sign is one such image.




reflection ecanner. Such & comparieon is shoun in Figure 4.2.

Close inepection of the two power spectra reveals that the noise
floor has not been altered at all. In fact, any variatione between
the two can probably be ascribed to differences in the shape of the
scanning aperture of the two input devices. The Utah aperture is
gaueeian in ehape, the other ie rectangular, and both uere set to
measure approximately a 100 micron spot. The reason for the
film-grain noise not being increased by the reflection scanner process
ie that the printing paper is much slower than ordinary film, and
hence much less grainy. Therefore, the graininess seen by a

reflection ecanner is that of the film, not the print.

If printe are made avoiding the toe and shoulder regions of tne D

log E curve of the paper (and are compensated for this after

scanning), results can be obtained that are nomiraiiy equal in quality

to that of a scanning microdensitometer., This applies, of course, to
the present application only - there are many instances in which
extremely wide dynamic range and the need to investigate actual
film-grain structure (as well as ease of operation) necessitate the

use of euch an instrument.
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Figure 4.2

The Hilton sign scanned on (a) a reflection scanner
and (b) a scanning microdensitometer. Below each is
the respective power spectrum.
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CHAPTER 5

Conclusion

S.1 Review of Restoration Method

The goal of thie reeearch is to restore a blurred image using a
minimum of Knowledge about the particular 'mage or blur involved. The
nonlinear homomorphic restoration syetem of Chapter 2 (Diagram 3) was
presented as a solution to this problem for the cass in which the blur
(1) can be modeled as a linear eystem and (2) has a uniquely
identifiable cepstrum. The success of this solution has been

demonstrated using three distinct types of such blurs,

Several restoration criteria have been presented including power
epectrum equalization, minimum mean square error, as welli as the
hand-tallored inveree restoration. Results indicate that the
prefe-red restoration procedure, in terms of aggresiveness vs noise
handling capabilities, ie the UGroceesing of densities with an
intenslity reetoration eystem that was eetimated in accordance with the
rouwer spectrum equalization criterion. This procedure is not only
eufficiently aggresive, but also insures a positive result and allows
for eimultaneous contrast enhancement. Although this procedure may

fail in the case of a severe blur in uhich noise dominates most higher

frequencies, euch cases are readily handled by the minimum mean square

ol




error criterion.

5.2 Remaining Problems

The homomorphic restoration method presented in Chapter 2 is only

successful on a limited set of blurs, and is by no means a solution to
the general deblurring problem. Some remaining problems, and a feu

euggeeted eolutione, are presented belou.

5.2.1 Ringing

One of the obvious flaus in the restorations presented in thie
thesie 1is the presence of ghost-like echoes, or rirging, in the
deblurred image. Thie phenomenon results from the fact that hix,y),
the restoration kernsl, is not allowed to extend to infinity, as it
theoretically should. If the convolution is to take place in a
reaaonable amount of time, the kernel must be truncated to be, say, 64
peinte wide by 64 points long. It is then uindowcd with a Hanning
windou. The restoration kernel performs the deblurring (roughly
speaking) by adding and subtracting shifted copies of the blurred
image. Tampering uwith this kernel hinders it in doing a perfect job,
and reaulte in remnants of these ehifted copies remaining in the
restored image. Figure 5.1 illustrates thies effect on a test pattern.
The restoration shoun in Figure 5.la was performed with a 128x128

restoration Kernel and the restoration in 5.lb uwith a B4xB64 kernel.
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(a)

(b)

Figure 5.1

Two restorations of the blurred test pattern
of Figure 3.5b using (a) a 128x128 kernel and

(b) a 64x64 kernel.




(b) (c)

Figure 5.2

(a) A computer-generated test pattern.

(b) A blurred version of the pattern.

(c¢) A restoration using an unwindowed kernel.
Note that the octagon and the line were
successfully deblurred.




65

Although the ringing in the former restoration covers a larger area,
it ie much less pronounced. It would indeed prove advantageous from a
computational point of view to achieve the results of the larger
kernel using only a modified version of the smaller kernel. The

etrategy for making such a modification is yet to be devised.

The ringing not only surrounds each object but is superimposed
upon the objecte themselves. Thus, the more variety present in an
image, the more eevere are the effects of ringing. Conversely, the
less variety, the lese severe are these effects; an important class of
images is included in this latter case. Consider an object
photographed against a dark background, such as a satellite against
the background of space. A restoration with an unwindowed Kernel
might prove optimal. Such a Kernel would restore perfectly in the
area of the object, and very poorly elseuhere. This case is
illustrated in the restoration of t'e slightly modified test pattern

shoun in Figure 5.2.

5,2,2 The Space-Yariant Blur

It has been assumed in this thesis that the blur is constant over
the entire image. The problem becomes very difficult(10] if the blur
changes in eeverity in different regions of the scene. The present
method may shouw promise, however, if the blur changes gradually over

the image. In this case, the image could be divided into sections;
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the average amount of blur could then be estimated in each section.
For example, if a motion blur progressed in eeverity from left to

right, one might divide the picture into halves and treat the problem

in tuwo partes.

[t the image had to be divided into many sectione, the method of
phase estimation by the cepstral technique wouid begin to fail, ae an
average over at least 20 picture subsections is required. In this
case, the zero crossing tschnique would prove valuable, as it produces
reliable reeulte after averaging over as feuw as two (possibly

overlapping) subeectione,

5.2.3 A Mixture of Blurs

Thus far we have aseumsd that a particular image had been blurred
by only one type of blur, i.e., motion blur, out-éf—focus blur, or
turbulence blur. The system for restoring such images is completely
automatic; the same systsm can also be applied to a combination of
blurs, but then automation becomes difficult. Figure 5.3a illustrates
such a case. The lens was not only defocused when the scene was

photographed, but the camera was also in motion.

Figure 5.3d showe the inverted and clipped power cepstrum of the
ecene. Characteristic spikes of both motion blur and out-of-focus

blur are plainly visible, which ie to be expected from a theoretical
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Figure 5.3

An image that was blurred by a moving
out-of-focus camera.

The restoration of that image.

The power spectrum of the blurred scene.
The power cepstrum of the blurred scene.
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point of vieu. The blurrsd imags consists of the original scene

intensities that havs bssn passed through tuo linear systems, i.e.,

bix,y) = i(x,y) ® alx,y) ® dix,y) (5.1)

Computing the cepstrum in a manner analogous to that of section
2.4 ylelds:

Cy(q) = Ci{q) + C.lg) + Cplq) (5.2)
where C.{(gq) and C,(q) are thes cspstra of ths tuo blurs, and are simply
added together in the cepstrum of the blurred image. It is not
difficult to distinguish visibly between these two cepstra and to
generate the phase associated with each. This procedure has been
followed to produce the restoration shown in Figure 5.3b. The data in
the pouwer cepstrum uas examined to loczts the position of the tuin
peaks of motion blur and to determine ths radius of the ring of spikes
resulting from out-of-focus blur. Howevsr, an automatic algorithm for

handling a mixture of blure has not yst been devised.

5.2.4 Automatic Prototype Selection

1t was explained in ssction 2.2 that the power spectrum of the
clear image, P;{(f), was estimated from a scene considered to be
etatietically similar to the blurred image under consideration. The
selection of ths eimilar scens is a manual one, and is the only
portion of the restoration procese (of a single blur) which is not

automated. Although many methode might be proposed to determine the

T g -
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etatistical nature of a scene from a blurred vereion of it, work by
Rom(8) shous special promise. Rom has shoun that the cepstrum of an
imag; containe an abundance of information concarning the statietical
nature of the image itself. Adapting these results to an approach

ueing the power cepetrum may prove tc be suc 3ssful.

S.3 Summary

The homomorphic restoration system .issented in this theeie ie
not euccessful in reetoring all classes of blurred images. The blure
that can be succeeesfully treated, however, include a large eubeet of
those encountered in modsrn imaging systems. The nonlinear
restoration system is not only versatile and flexible, but also enjoys
the solid foundation of standard linsar aystem thsory. Tie method of
reetoring theee blurs is particularly advantageous in that it lends
iteelf readily to automation. In addition, the procees consumes only
a modest amount of computation time, insures a positive definite

reeult, and allous for simultansoue contrast enhancement.




APPENDIX A

Power Spectrum Estimation

The method used in this work for the estimation of the pouer
spectrum of an image is that set forth by Welch[9). Uhen applied in
two dimensions, the method consists of subdividing the image into K
equal and possibly overiapping square sections cf width lec The
sections are then windowed (by a Hanning or Parzen window) and Fourier
transformed. The power spectrum is then estimated by computing the
average of the square of the magnitude of these transforms. The
method assumes that the ensemble of images under consideration is

ergodic,

There are several variations possible, depending cn the type of
information needed from the power spectrum. Increasing the size of L
resultd in increased resolution in the power spectrum, as more points
are thon ueed (o cover the same band of frequencises. Increasing the
eize cf K increases the degree of convergence of the spectrum. If a
finer frequency grid is desired without loss of convergence, one

augments each LxL section with zeroes after windowing.

It has been found that an average over 50 B4xB4 sections contains

sufficient information for a successful restiuration. If more
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reeolution ie required, say for the zero crossing technique of phase
estimation, a 128x128 estimation is adejuate. Figure A-1 shous,
howsver, that averaging only twc sections results in an acceptable
restoration; this eaves considerable computation time, as pointed out
in Appendix B. Figure A-2 shows the result of doubling the resolution
of the power spectrum of a motion-blurred image, thus revealing

clearly the lobes of the sin(x)/x component.

The astute reader will no doubt have noticed that the author has
made use of the power rpectrum to describe and determine the nature of
the blurring system, whereas others(4.6] have computed a quantity
called the average log spectrum. This is computed in the same manner
as the pouwer epectrum vxcept that the average is over the logarithm of
the magnitude squared of the transform of the picture subsections.
Taking the logarithm is theoretically pleasing in that each subsection
represents a mapping from convolution into addition. In practice,
houever, the approach has some draubacks. Figure A-3 compares the
result of computing the average log spectrum vs taking the log of the
poWer spectrum, It is easily seen that the power spectrum contains
more information pertaining to the slanted roof of the portico than
the average log spectrum. Therefore, “he use of pouer specira allous
the relationship of Eq. 2.1 to convey more information than if the

average log spectrum were used. The theuretical issues involved here

have been recently explored and set forth by Ingebretsen(6].
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Figure A-1

office building using only two
estimate the power spectrum.
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(b)

A-2

ion-blurred

Image

(o) The same power spectrum computed on a
doubly-fine grid.
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(b) (c)

Figure A-3

(a) An original scene.
(b) The estimated power spectrum
(c) The average log spectrum.
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APPENDIX B

Computation Times

One of the advantages of the restoration methods set forth in
this thesis is the modest amount of computation needed to realize a
successful restoration. The work presented in this dissertation uas
done on the University of Utah PDP-10 TENEX time sharing system and
POP-10 10/40 "single user" computer. These machines have fetch,
floating multiply, and floating add times of approximately 2.5, 5, and

11 microseconds respectively.

The times associated with the three basic <3teps in the
restoration process are tabulated below. The times given are for a
512x512 image, a 64xbB4 power spectrum, and a B4xB4 restoration kernel.
The time given for pouer spectrum estimation is for the averaging of

50 sections.

Power Spectrum Estimation (50 sections) . . . . 3 min
Blur Identification and Kernel Generation . . . 1 min
Tuo-Dimensional Convolution . . . . . . . . 15 min

Total . . . . 19 nin




Appendix C

Notes on Blur Detection and Phase Generation Algorithms

Section 2.3 presented the notion of determining the blur by means
of the transform of the log pouer spectrum, which was termed the pouer
cepstrum, Only 20 sections need be averaged in order to estimate a
pousr epectrum, which, uhen traneformsd to the cepstrum, contains

eufficient information to detect the blur.

The pouwer spectrum is, of course, uindouwed before it is Fourier
transformed to the cepstral domain. A Parzen uindou was found to be

very favorable as far as shaping the cepstral spikes for accurate

identification by algorithm,

The blur identification algorithm is straightforward and
heuristic. The algorithm attempts to identify motion blur by checking
to see if the 10 most negative points all lie within a circle of
radiue 2.5. [f it does not find this, it then looks for focus blur by
checking to see if the most negative point and any one of the 20 other
most negative points lie the same distance from the origin. If this
is also not the case, the algorithm defaults to turbulence blur. The

rationale behind the decision rules can easily be seen by examining

the cepstra in Figures 2.5 and 2.3, The algorithm has been tested




without failure on the power cepstra of over 20 blurred images. The
test consisted of comparing the results of the power cepstrum

technique with those of the zero croesing method.

To generate the appropriate phase from the point spread function
of the blur, a knowladge of the spacing of its zeroes in the frequency
domain is needed. The case of motion blur is quite straightforward.
A PSF of length a results in zero crossings 1/« apart, the first one
being at f=1/a. Using a discrete Fourier transform of length N, the

position of the first zero is then K/N=1/a, or KsN/a.

The caee of out-of-focue blur is only slightly more difficult.

Ae ie shoun in Appendix DO, the Fourier transform of a cylinder of

radiue R is J,(rR)/(rR). It is knoun(ll] that the first zero occurs
at rR = 3.83, hence,

2nfR = 2n(K/N)R = 3.83 (C-1)

K = 3.83 N/ (2nR) (C-2)

After R ie found from the power cepstrum, K can be calculated from

equation C-2. K can also be found directly via the zero crossing

technique of eection 2.2, The next five zero crossings occur at 7.01,

10.2, 13.3, 16.5, and 19.6.




Appendix D

Derivations
D-1 Minimum Mean Square Error Filter
In lieu of the volumee of material that have been written on Wiener

filtering, the following  tuwo-page derivation ie presented.

Representing Diagram 3 mathematically, we have:
e = [[(lilx,y) ® alx,y) + nix,y)] @ hix,y) - ilx,y)}%dxdy
Parsevals's Thaorm allows us t. urite this in the frequency domain:
e = [ J(LICF) - ACF} + N(FIIH(F} - T(f))%df

Instead »f minimizing e itself, we choose to minimize E{e}l, which can
be accomplishad by minimizing the expected value of the above
integrand. Assuming the noise to be uncorrelated to the signal, ue

can urite:

E(I?(¢) [ALFIH(£) =112 & IN(FIH(£)]%}

P AfYIACFIH(£F)-1F + P, (FYIH(F)P?

Setting the derivative of this (nith respect to the real and imaginary

parts of H(f)) equal to zero, we have:




2P, () (ACFIH(£)-11A(F) + 2P, (fIH(f) = O

Or, finally:

Hif) = P(f)A(£) /[P (FYA(FIA(F) + P,(f)]

H(f) = P (F)A' () /(P (F)IACEIIP + P,(f)]

We have used tuwo important relationships. The first beinp that

if a(t) is the input to the system h(t), with b{t) the output, then

E(b?(t)) « E{{al(t)@h(t)]?) « E(AZ(f) H ()] = P (f)IH(f)I?

The uecond relationship is the following: given three complex

vectors, P, O, R, where

P = 10RP

then the partial of P with respect to R is

20RQ° = 210F°R

This is easily shown by treating P as a sum, namely

P « RelP) + jIm(P}




0-2 The Fourier Transform of a Cylinder

The two-dimensional Fourier transform of a function fix,y) ie

Flu,v) = [ [ fix,y)expl-jlux+vy))dxdy

Let: filx,y) = a for x%y? s R?, O elseuhere
Let: x = gcos(6)

y = ¢8in(6)
And: u = rcos(d)

v » reain(®)

79

Thent Fl(u,v) = [ [aexpl-jr¢(cos(f)cos(d) + 8in(0) sin (®) )] ¢dbds

Wwhere the limits of integration are 0 to R and 0 to 2n.

This reduces to:
Flr,0) = af¢[expl-jrecos(6-9)]d6

F(r) = 2af¢nI,(-jrg)dg = 2an [ J,(r¢)ede

Substituting x for r¢,
= 2ra/r? [ xJ,(x) dx

Wwhare the limits of integration are O to Rr.

Finally: F(r) = 2na/rJ,(Rr)

If we let the cylinder have unity volume, i.e. nR’a = 1, then

F(r) = 2J,(Rr)/ Rr}
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D-3 The Fourier Transform of EXP(-x?)

G(f) = [exp(-x?)exp(-jx2nf)dx

G(f) = [expl-(x’+jx2nf)])dx

Completing the square, we have:

G(f) = [expl-(x+j2nf/2)2-(2r.(/2)*)dx

G(f) = expl-(2rF/2)2] [ exp (- (x+j2nf/2)%) dx

A moment’'s contemplation will convince the reader that the value of

the above integral is independent of f, nence

G(f) = kexpl-(nf/2)?)




The Fourier Transform of a Rectangle

Lett glx) = b for -a € x s a, 0 eleeuhere.

G(f) = [bexpl-j2nftldt

whrre the limitn of integration are from -a to a.

G(f) = -jbfein(2nft)dt + bfcos(2nft)dt

The firet integral ie equal to zero; the value of the second is

G(f) = (b/2nf) [ein{2naf) -sin(-2naf))

CG(f) = (b/nflein(2naf)

G(f) = 2absin(2naf)/ (2raf)

For a rectangle of unit area, i.e., b=1/2a, we have simply

G(f) = sin(Znaf)/(2naf)
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